A coupled model for active gel hydrodynamics

¹Soft Matter and Biological Physics Group, CMP, Department of Physics, Durham University, DH1 3LE, UK ²SUPA, School of Physics and Astronomy, University of Edinburgh, JCMB Kings Buildings, Edinburgh EH9 3JZ, UK

E. J. Hemingway¹, S. M. Fielding¹, M. E. Cates²

Research Council

1. Introduction

Active soft matter is kept out of thermodynamic equilibrium by an internal energy source, normally ATP hydrolysis in a biological context.

For example **active gels** such as actomyosin play an important role in the cell cytoskeleton, controlling **motility** and **cell division**.

Small clusters of the **myosin** molecular motor form, and interact with a network of **actin** filaments.

In the cell cytoskeleton, **actin** can form an entangled **network**: **myosin** then produces

3. Q (active nematics) only

1D at high enough activity (*i.e.* energy input), the system **spontaneously flows**, with a net throughput.

2D these **destabilise** forming either **roll-like structures** (low activity) or **turbulent flows** as shown below (high activity).

A surprising result: in the limit $Re \rightarrow 0$ considered here, we normally expect *laminar* flows. However both simulation and experiment find examples of activity driven turbulence.

contractile stresses, which we model using the following coarse-grained picture...

2. Model

Active materials can form ordered phases, with broken symmetries similar to those of **nematic** liquid crystals

We adapt a liquid crystal model to **coarse-grain** the effect of many apolar active particles

Q describes local orientation; a constitutive relation **couples orientation with flow**

Q (active nematics)

 $D_t \mathbf{Q} = f(\mathbf{Q}, \nabla \mathbf{u})$ With added **polymer**, the model has two competing interactions (from both \mathbf{Q} and \mathbf{C}): this has important

e.g. shear active matter between two parallel plates in 1D: in some regimes we find an **instability** where flow (colour map right) exhibits spatiotemporal chaos or **rheochaos**.

rheological consequences.

However, this changes if we add in polymeric background $\boldsymbol{C}\dots$

4. Q (active) + C (polymer background)

Add polymer background: in 2D, states with net throughput can be restabilised.

Symmetry of the system is spontaneously broken leading to net flow in a randomly chosen direction.

C (polymeric background) **NEW!**

A simple polymeric model describes the **cytoskeletal background** in which our gel sits

constitutive relation couples conformation tensor **C** to flow

 $D_t \mathbf{C} = g(\mathbf{C}, \nabla \mathbf{u})$

u (velocity field)

Implicit coupling between **Q** and **C** i.e. **only** through **flow field**

in zero Re limit, **velocity field u** reacts instantly to stresses from **Q** and **C**

0 60 80 100 120

colour denotes local shear rate ($\dot{\gamma}$), blue low, red high

5. Outlook

Need to understand exactly what effect polymer **C** is having: examine flow fields, time/space correlation functions etc.

We could use the same formalism to describe (at very different length scales) swarming motion in bacteria, or even passive liquid crystals suspended in polymer: active materials are a great example of **universality**!

Centre for Materials Physics

