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Abstract

Various techniques for recreating sound in reverberant spaces are examined,
and by building on the image source method, a realistic reverberation simulation is
developed. An alternative Monte Carlo method is proposed, and quantitative and
qualitative evaluations are made both between the two models, and with reference
to an actual recording.
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1 Introduction

Analysis of the acoustic properties of a space is an important part of architectural design.
Performance spaces in particular have very specific requirements for how much reverber-
ant sound is heard at various positions in the room, as this has a major impact on the
clarity of sound. While these properties can be measured on site, this is not always an
option. For example, it is clearly not practical to analyse proposed buildings in this way;
this is where simulation becomes the only real alternative.

However architectural design is not the only use for reverberation simulations; they
also play an important role as an effect for music production. Often musicians might
take a dry recording of a voice or instrument in the studio, a room which should ideally
be acoustically dead. Then a reverberation effect can be applied to give the appearance
of performance in (theoretically) any space. Real-time reverberation effects may also be
applied in live performance, but that is beyond the scope of this project.

Two main classes of model are presented in this report:

� Deterministic: These models take input data describing a space, and apply an
algorithm resulting in the same output every time. Decisions for the directions of
sound waves are made purely on a geometric basis.

� Monte Carlo (or Stochastic): A logical alternative is a model whereby the the
properties of a system are discovered by random sampling.

An equal amount of time was spent investigating each category, firstly developing a
technique called the Image Source method. While this proved to be an accurate model of
reverberant sound, it lacked the flexibility to simulate more complex spaces and acoustic
phenomena such as diffuse sound scattering.

An alternative method called the Monte Carlo Ray Tracing technique was proposed
to investigate more complex room behaviour. This proved to be quantitatively consistent
both with the Image Source results and with predictions from literature, at least for
rectangular rooms. Simulations of the reverberation room at the University of Edinburgh
showed some of the observed anomalous behaviour, though numerical predictions didn’t
exactly match real world recordings. This could have been in part due to inaccuracies in
the recording; a failing in the model could be equally likely.

Qualitatively, the Monte Carlo output produced was a good approximation to real
world reverberation, and was free of some of the spurious fluttering effects that arose in
the Image Source results. All files have been made available for comparison at [1].
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2 Background and Theory

Both of the two contrasting methods explored in this project are based on the same
underlying physics; they differ only on how they arrive at the result. However first, we
should see what exactly the concept of reverberation physically means.
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Figure 1: Room Reflections

When we hear a sound from a specific source in a real
world enclosed space, for example a balloon popping in a
cathedral, it is not just direct sound from the source to
the listener that is observed. As the sound source gener-
ally radiates sound energy in all directions, what is actually
heard is the direct sound followed by a series of later reflec-
tions off the various surfaces of the space (as seen in Figure
1). As the sound from these later reflections has further to
travel, the intensity upon arrival will become increasingly
diminished as time progresses, as sound energy is inversely
proportional to the distance travelled.

To simulate this set of reflections digitally, we must
introduce the concept of an impulse response. This is a
quantitative representation of the reverberant character of
a space, and is composed of a discrete set of impulses of
varying amplitudes. The operation can be interpreted most
intuitively by thinking about the convolution of the impulse response with a signal, which
should also be discretised (e.g. a .wav file recording).

Figure 2: Demonstration of Simple Impulse Response (3 impulses)

Mathematically, these impulses are represented by delta functions. The convolution
of a delta function δ(t − a) with some arbitrary function f(t) is f(t − a), that is the
function is time-delayed by a factor a [2]. By extension, an array of impulses at various
times, leads to a superposition of several ‘copies’ of the original function offset by various
times. If we set the function to be our input signal, this produces something akin to the
example given in Figure 2.

We can see that this will quickly lead to a very muddy (and unphysical) output. This
is due to the fact that in the real world, sound decays as 1/r, meaning that the amplitude
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of the later impulses should be scaled appropriately. To do this, we must find how far
the sound has travelled for each reflection: this is where the differences in the various
approaches appear (see Sections 3.1, 3.2).
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Figure 3: Theoretical Impulse Response

The concept of an impulse response is perhaps better illustrated with a concrete
example (Figure 3). As expected, the logarithm of the impulse energy, a quantity that
decays as 1/r (and therefore 1/t), obeys a linear relationship. The direct sound travels the
least possible distance and so is represented by the largest impulse. Soon after, the early
reflections arrive, and having travelled slightly further, exhibit slightly lower amplitudes.
Later on, we see the arrival of a large number of late reflections which appear to start
to merge, creating a continuous diffuse sound field, with very few of the distinguishable
echoes heard earlier [3]. If the model is to provide a qualitatively realistic output, similar
behaviour will have to be replicated.

As the project title suggests, the computational time of either method is of little
importance, as long as it remains within a sensible range (we don’t want to be running
the simulation for years!). Once an impulse response has been determined, it can be
written to disk and applied to as many recordings as required.

Theoretically, the basic physics of reverberation has had a strong basis for some years.
Sabine (1868 - 1919), one of the pioneers of understanding reverberation, is still ubiquitous
in the field. Much of his work in Collected Papers on Acoustics (1922) [4] still holds up
today, in particular the famous Sabine equation.

One of the first known computer based implementations of a ray tracing method was
produced by Krokstad et al (1968) [5], though the lack of computing power meant that the
results were not particularly accurate nor useful. Ray tracing methods had previously
been solved by hand with even less accuracy [6], but this was as more of a proof of
concept than anything else. Kuttruff’s seminal Room Acoustics (1973) [2] provides one
of the more detailed descriptions of the behaviour of sound in a space. He has been
instrumental in many of the techniques used throughout this report, with particular
interest in the modelling of diffuse reflections [7], although this is not covered in detail
here.
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3 Method

Armed with the theory behind an impulse response, we are ready to start simulating a
space. The problem essentially boils down to finding:

(a) The delay before sound from a specific reflection arrives.

(b) The energy of the sound from that reflection.

Each of the two following methods approach this using fundamentally different tech-
niques. Firstly, we shall examine the Image Source method.

3.1 Image Source Method

The Image Source technique works on a purely geometric basis. We can treat the sound as
a ray as it travels from source to listener, an assumption whose validity is later justified
(see Section 4.3). This means that it obeys specular reflection, that is, the angle of
incidence is equal to the angle of reflection. By tessellating the simulated room (shown
in bold in Figure 4) with a series of virtual rooms, these can be populated with virtual
sound sources in the mirrored positions [8] (see the hollow circles in Figures 4 & 5). The
path from listener to virtual source (marked × and© respectively) is then just equivalent
to the reflected path (Figure 5).
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(0,-1)

...

(0,1)

...

(-1,-1) (1,-1)

(1,1)(-1,1)

. .
.

. . .

. . .

. .
.

-
Lx

6
Ly

×(a,b)
(p,q)u e eee
e e eee
e e eee

e e eee
e e eee

Figure 4: Image source method (adapted from [8])

As the path to the virtual source is now just a straight line, it is simply a case of
taking the Euclidean norm of the difference in the two points, and we arrive at the length
of the reflection, r. This gives us an an impulse in our array at time t = r/343 and
intensity proportional to 1/r.

The process of finding the image sources is well defined algebraically for rectangular
rooms. For a virtual room labelled with indices (d, e, f), where the original room is
defined as (0, 0, 0), with sound source and listener at points (p, q, r) and (a, b, c) within
the room, we get a vector with the following components:
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Ad =

{
(d+ 1)Lx − p− a for d odd

dLx + p− a for d is even

Be =

{
(e+ 1)Ly − q − b for e odd

eLy + q − b for e is even

Cf =

{
(f + 1)Lz − r − c for f odd

fLz + r − c for f is even

×

u e
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Figure 5: Equivalence of Real and Image Sources

However so far, this model fails to take into account any actual effects of absorption.
On each reflection, the sound loses part of its energy proportional to (1 − α) where α
is a property of the surface called the absorption coefficient, which ranges from 0 (full
reflection) to 1 (total absorption). Therefore for n reflections, this means a factor of
(1 − α)n must be applied. We can easily tell the number of reflections by summing the
absolute values of the image room’s indices:

n = |d|+ |e|+ |f |

This assumes that the absorption coefficient of the surface has a flat frequency re-
sponse, which is very rarely the case [9, 10]. This is remedied in a later version of the
code, see Section 4.1.1 for details.

3.2 Monte Carlo Ray Tracing Method

The Monte Carlo ray tracing method takes an altogether different approach. Using the
idea introduced above of treating sound specularly, the model fires out a ray in a random
direction, reflects it appropriately, and repeats this, tracing the ray as it bounces around
the room. Once the its energy falls below a certain threshold, the path is terminated. To
fully understand how the mechanics of the ray tracing method works, we must look at
the geometry of the system.

The walls of the room can be represented as planes, defined either by three points on
the plane, or by a point on the plane and its unit normal. If points ~p1, ~p2 and ~p3 lie on
the plane, we can find the normal by the following:

n̂ = (~p1 − ~p2)× (~p1 − ~p3)
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The ray itself is similarly defined by a unit direction vector d̂ and a source point, ~s. Thus
the parametric equation for any point ~p on the ray is given by:

~p = ~s+ t~d

where t can be thought of as the time. To find at what time the ray intersects the plane,
we can use:

t =
n̂.(~p1 − ~s)

n̂.d̂
for n̂.d̂ 6= 0 [11]

Using this formula we can iterate through each surface, and find the time to reach it.
As we are clearly only interested in solutions where we are propagating forward through
time; we can straight away ignore any solutions with t < 0 (this will be half of the
surfaces for a rectangular room). Then, we just choose the solution with the smallest t:
this corresponds to the nearest plane. This then becomes the next source point.

Finally we need to reflect the ray. This is essentially just a negation of the ray’s
component perpendicular to the plane. It is done using the following [12]:

d̂′ = d̂− 2(d̂.n̂)n̂

Figure 6 shows the planar view of a sample trace for a single ray in a rectangular
room. We can see its behaviour is truly specular, an obvious analogy being with a laser
beam reflecting round a room with mirrored walls.

Figure 6: Example trace for a single ray as seen from the X-Z plane. Interestingly, we
can see the emergence of room modes; in this case we can see one of the room’s tangential
modes.

However thus far, the model does not account for the listener in any way. Whereas this
requirement is filled implicitly in the Image Source model, the ray-tracing case requires
careful consideration and is discussed in depth in Section 4.2.2.
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Figure 7: Trace pattern for multiple rays in a rectangular room. Each ray here is repre-
sented by a different colour.

With proper detection in place, we can use both the time spent travelling by the ray
and its remaining energy to contribute to the impulse response. When this process is
repeated many thousands of times, a picture of the room’s many reflections is gradually
built up (see Figure 7), giving us our final impulse response.
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4 Development & Discussion

While both methods in their current state can produce an impulse to a reasonable de-
gree of accuracy, there is still much room for improvement, particularly with regard to
qualitative improvements. In the following discussion, we also discuss how best to deal
with some of the idiosyncrasies that occur during the transition from pen and paper to
computer.

4.1 Image Source Method

4.1.1 Towards A More Realistic Absorption Profile

While the basic Image Source method outlined above produces an quantitatively accurate,
on listening to the output we find that it sounds unnaturally ‘harsh’, that is to say there
are a large presence of high frequencies. This is due to the fact that must surfaces
have a absorption coefficients with a fairly strong frequency dependence: typically high
frequencies are heavily attenuated [2].

While implementing an explicit frequency dependence in the simulation is well beyond
the scope of this project, we can approximate the effect by incorporating a basic low pass
filter (LPF) which only allows lower frequencies to pass. The filter will need to be
applied on each reflection so we’ll also need to use a method to find the effect of multiple
applications.

One of the most efficient type of filters to use in the time domain (which is where our
impulse response is defined), is the moving average filter [13], specifically, the two-point
moving average filter. It has the basic effect of ‘smoothing’ the signal it is convolved
with, thus reducing high frequencies, which by definition are points in the signal with a
high rate of change in value. Lower frequencies, which vary comparatively much less with
time are not as affected (for a complete description, see [13, Ch. 16]).

×

-
(a) Original Impulse

× ×

-
(b) 1st Order LPF

×
×
×

-
(c) 2nd Order LPF

Figure 8: Development of a LPF

Mathematically, this average is implemented using two successive delta functions in
our discrete impulse response. This will produce two copies of the original signal offset
by a single sample. As the signal will now have twice the amplitude, we must divide the
magnitude of these responses by two. Alternatively, we can think of it as the total ‘area’
of the filter should remain normalised to one. Figure 8b shows the two-point moving
average for the initial impulse shown in Figure 8a.

To apply the filter multiple times, we simply convolve it with the signal repeatedly.
The simplest way to do this is to use Convolution Theorem. As the convolution operation
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is both associative and commutative, the following is equivalent to convolving h n times
with itself:

hnew = F−1(F(h)n) where n is number of applications/reflections.

It is worth noting that as the number of reflections is a degenerate quantity, it is
computationally sensible to perform the above calculation once at the start of the program
then recall the values from a lookup table. The result for one reflection (n = 1) is shown
in Figure 8c. To apply this to the actual impulse response, we simply replace each impulse
with its corrected, filtered version. As this technique is not actually specific to a certain
method, it can also be as easily applied to the Ray Tracing method.

4.1.2 Phasing Effects in Cuboid Rooms

If we run the Image Source model using a perfectly square room, the output produced
exhibits some strange behaviour, producing a sound similar to a flanging effect (see [1] for
an example). This can be somewhat be explained by thinking about the virtual rooms
on the same ‘axis’ as the simulated room. As there is none of the randomness seen in
the Monte Carlo method, these virtual source can form a definite repeating pattern, and
if this is pronounced enough, it can give the perception of pitch. In square rooms. this
pattern is mirrored in each dimension causing the effect to magnify, which can produces
the observed fluttering effect. Additionally rooms whose walls have integer (and therefore
harmonic) ratios of lengths will exhibit the pitch effect, albeit to a lesser extent.

This is just an example of the one of the problems caused by using deterministic
methods to simulate physical processes which, in general, behave with at least a small
element of stochasticity.

4.1.3 Flexibility

While the Image Source model performs well for rectangular rooms, it struggles to cope
with more complex spaces. Generalised algorithms for non-rectangular rooms do exist,
although these are generally not completely watertight [14]. There is a danger of placing
virtual sources in positions where physically there is an obstruction in the way, and while
visibility checks can be performed, this only moves the model back towards the ray-tracing
method!

In architectural acoustics, designs for prospective concert halls can exhibit many com-
plex shapes and obstructions, a pillar for example would be nearly impossible and cer-
tainly impractical to implement in this way; Monte Carlo methods prove to be much
more appropriate.

4.2 Monte Carlo Ray Tracing Method

4.2.1 Angular Distribution/Control

One of the benefits of the stochastic ray tracer is the amount of control over the angular
distribution of sound propagation. The most basic source to simulate is an isotropic
point, that is to say sound is radiated in all directions equally. While in reality sound
sources (for example musical instruments) can be fairly directional in their method of
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sound production, the point source remains a fairly sensible approximation [15, pg. 104],
particularly given its simplicity to implement. Naively, we might implement a random
direction vector as follows:

~r =
(x1, x2, x3)√
x21 + x22 + x23

(1)

where x1, x2, x3 are independent random variables taken from a uniform distribution.
However if we take a histogram plot of the distribution of angles in a plane through the
source we see that the distribution is non-uniform (Fig. 9a). The above method effectively
samples points in the volume of a cube: we ideally require something analogous to points
on the surface of the unit sphere.

(a) Naive Direction Vector (b) Gaussian Direction Vector

Figure 9: Comparison of Angular Distributions, each histogram shows number of rays
against angle

The next most obvious method to try would be to pick polar and azimuthal angles
from the ranges 0 < θ < 2π and 0 < φ < π respectively. However this again fails as the
area element dΩ = sinφ dθ dφ is φ dependent, resulting in higher densities of points near
the poles. This can be corrected by generating [16]:

θ = 2πu

φ = cos−1(2v − 1) where u, v are random on (0,1)

Unfortunately calls to trigonometric functions are fairly computationally expensive,
particularly when repeating millions of times as expected in the ray tracing algorithm. A
second method proposed by Muller [17] avoids this cost by using variables taken from a
Gaussian random distribution, and applying them to Equation 1. Basic tests in Matlab
found this to be roughly 4 times faster than the trigonometric technique, and interestingly,
generating random variables from the Gaussian distribution appears to be as quick as
the uniform distribution (see Appendix A.3 for details of the test). Figure 9b shows the
corrected distribution exhibiting the desired uniform behaviour.
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The complexity of simulating even a simple isotropic source reveals interesting phe-
nomena. The problems with incorrectly weighted distributions encountered above could
actually be manipulated. A directional sound source such as a loudspeaker could be rep-
resented with much greater accuracy using a weighted distribution: it is not very realistic
to trace as many rays out from the back of the speaker as from the front!

4.2.2 Ray Detection

Another complication introduced by the ray tracing method is in the method used to
detect a ray. In order to get a distance or time for the impulse response, some form of
observer is needed, for example, a microphone.

This is a trivial task for the image source method as the ray’s path is actually deter-
mined by the detector’s position, effectively behaving as an infinitesimally small point.
This approach fails for the ray tracing method: the probability of an infinitesimally thin
ray with a randomly chosen initial direction passing through an infinitesimally small point
is very small indeed!

The most natural solution is to use a small sphere centred at the detection point.
This has the advantageous property of possessing the same cross sectional profile from
any direction. Collision events are also reasonably simple to detect geometrically. We
can express a point ~p on the surface of a sphere of radius ρ, centred at position ~fs by:

|~p− ~fs|2 = ρ2

To check for collision, we substitute in the parametric equation for a line with source
~s and unit direction vector d̂:

|s+ td̂− ~fs|2 = ρ2, using ~p = ~s+ td̂

Expanding this gives us a quadratic of the form:

at2 + tb+ c = 0

where a = d̂.d̂ = 1, b = 2(~s− ~fs).d̂, c = (~s− ~fs).(~s− ~fs)− ρ2

This is solved in the usual way:

t =
−b±

√
b2 − 4ac

2a

We can tell from the discriminant alone whether or not a collision has occurred.
By using this check before solving the quadratic, we can save ourselves unnecessary
computation:

b2 − 4ac =


< 0 ray misses sphere

= 0 ray exactly tangential to sphere

> 0 ray passes through sphere

We are only interested in the latter two solutions, from these we can calculate the
time from the ray’s source to the sphere, and therefore, also the distance. As the radius ρ
tends to zero, the point of intersection can be approximated by the point at the centre of
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the sphere, ~cs, meaning the quadratic need not be explicitly calculated. The only caveat
is that when the ray is first fired from the source, it is possible for a negative time solution
to be erroneously used, that is to say that an intersection would occur should we trace
the ray backwards through its origin, but this can easily be eliminated with a quick check
in the code.

The difficulty is in choosing an appropriate size for the detector: too large and a
disproportionately large number of rays will hit straight away, leading to an unphysical
density of early reflections. Conversely, a detector with too small a radius will simply not
pick up enough information to produce a realistic impulse response. Studies by Xiangyang
et al. [18] suggest a technique for determining the optimal volume (and therefore radius)
for the detector, Vr.

Vr =
10V

N
=⇒ r =

(
15V

2πN

) 1
3

However this is not claimed to work in general, and application of this to the presented
ray-tracing model leads to unrealistically high initial densities of impulses, and not enough
late reflections. However in the same paper, Xiangyang et al. suggest a second technique
whereby the radius of the detector depends of the length of time the ray spends travelling:

ρ = ctray

√
2π

N
where N is the number of rays, c speed of sound (2)

As the probability of detecting a ray is loosely proportional to ρ3, Eq. (2) has the ef-
fect of changing the emphasis of the sampling process so that the late diffuse sound field is
given more precedence. However we must be careful when calculating the radius dynami-
cally that we don’t make the sphere extend outside the room. The authors also recognise
that it is sensible to account for the volume of the room, and suggest multiplying Eq.
(2) by a factor proportional to log10(V ). Ultimately the complexity of the reverberation
problem means that each situation should ideally analysed carefully to choose a radius;
the above formulae should serve more as guides than definite rules.

4.2.3 Ray Termination

While the Image Source method which has a well defined finite path from source to detec-
tor, the rays created in the Monte Carlo Ray Tracing method will propagate indefinitely.
Physically, sound the reflects around the room until it possesses only a negligible amount
of energy; this is a sensible model to implement in the algorithm. This can be achieved
by explicitly calculating the energy at each iteration, but this additional computation
can be avoided by setting a termination length dterm instead (the distance travelled by
the ray is tracked throughout its journey, its energy is only calculated on detection).

As computation time increases linearly with termination length, we must give careful
thought to the numerical value for this cutoff. Too long and unnecessary computational
time is wasted; too short and we may miss a room’s true behaviour. Relative to some
initial loudness of the signal, anything more than ∼ 30dB below this will be unlikely to
have a noticeable effect on the output [15, Chap. 3]. In terms of energies in the impulse
response, this corresponds to points with less than 0.1% of the initial impulse. As the
energy g = 1/r, this gives us a termination length of around 1000m.
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However the above assumption does not account for multiple (otherwise insignificant)
impulses summing at the same point in time to form a significant contribution, so it is
sensible to choose a slightly bigger dterm. Like most of the ray tracing parameters we’ve
seen so far, this value is also not completely general. Very large spaces will be under-
sampled if the ray is terminated too soon. Additionally, spaces with abnormally long
reverberation times (see Section 5.2) will require at least dterm > cRt metres for proper
simulation.

4.2.4 Breakdown in Pathological Cases

While the ray tracing algorithm is geometrically watertight, it is possible that the tech-
nique could break down when implemented on computer. Since we can only solve the
intersection equation with a finite amount of precision1, it is possible for the point of
reflection to be an infinitesimal distance off the plane (and therefore outside the volume).
This means on the next iteration, the ray will reflect off the outside edge and will be
lost bouncing around space! This is easy enough to rectify: we can simply exclude the
reflecting plane from being counted on the next repetition of the algorithm. However,
this serves to demonstrate the care that must be taken when translating a continuous
theoretical model into a discrete computing environment.

4.3 Suitability of Ray Based Methods

Both the Image Source and Monte Carlo Ray Tracing methods can be classed as ray
based methods, although the latter is perhaps a more explicit example. The ray-like ap-
proximation of sound is valid for reasonably high frequencies, where wave-like phenomena
such as diffraction can be safely ignored [20]. At low frequencies where the wavelength
λ is of the same order as the length of the room, the model is less accurate. Addition-
ally, λ must be larger than the roughness of the room’s surfaces otherwise pure specular
scattering is not observed [2, pg. 60].

Although pseudo standing-wave patterns may be observed in the Ray Tracing model
(see Figure 6), in general true wave-like is not reproduced. Notably, any phase based
effects such as constructive/destructive interference are missed. This can be particularly
important if the source or listener is at a nodal or anti-nodal point of a room mode [15].
While there is growing interest in wave based solutions for solving acoustical problems,
particularly at low frequencies [21], ray based methods (or derivatives thereof) remain
one of the most popular solutions.

5 Results

5.1 Rectangular Room

The first space to be analysed is an idealised rectangular room with a constant absorption
coefficient α = 0.3 and dimensions 45.9623 × 65.23354 × 30.65432 2. Physically this
corresponds to a reasonably large space such as a factory floor, an environment in which

1Matlab uses double precision, which can lead to rounding errors typically of the order 10−16 [19].
2The high precision used for the dimensions is to avoid effects described in Section 4.1.2.
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reverberant noise levels can be of great importance. The simulation could just as easily
be applied to a small room but the effect would be nowhere near as noticeable.

These dimensions gives a surface area of 2×(L×W+L×H+W×H) = 8.97×103 m2,
and a total volume of 9.19 × 104 m3. We can use Sabine’s formula [15] to predict the
amount of time required after an impulsive sound for the SPL to drop by 60dB. This
quantity is the most common property to measure of a reverberant space and is known
as the reverberation time, Rt. Using the above parameters:

Rt =
0.161V

Sα
=

0.161× 9.19× 103

8.97× 103 × 0.3
≈ 3.24 secs

We can obtain the equivalent quantity by converting the simulated impulse into units
of SPL, i.e in decibels. This is done by taking 10log10(iir). The results are presented in
Figure 10.

Time (s)

S
P
L

(d
B
)

(a) SPL Decay for Image Source Method

(b) SPL Decay for Monte Carlo Ray Tracing Method
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Figure 10: Reverberation Time For Rectangular Room. Black line shows the Sabine
prediction of Rt = 3.24s. Note the definite cutoff described in Section 4.2.3
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While the amount of ‘noise’ varies greatly due the difference in densities, both show a
reasonably clear linear relationship. Taking the line of best fit through the peak values,
we can obtain values of around Rt = 3.5 and Rt = 3.4 seconds for the Image Source
and Monte Carlo methods respectively. The confidence in these values is fairly low
however, with either value only being accurate to around ±0.15 seconds or so. It is worth
mentioning that the Sabine method should not be taken as an exact prediction of Rt.
The formula is not without its criticisms [22], but it remains a sensible approximation
is this scenario. A good way is of course to physically record and analyse the impulse
response of the room, but as in this scenario the space is not based on a specific real
world environment, this is not an option.

5.2 Reverberation Room

Fortunately, the second space of interest has a measurable impulse response. The rever-
beration chamber at the University Edinburgh is a completely asymmetric room. The
walls are all of different lengths and heights, and no two surfaces are parallel. When
discrete standing wave behaviour occurs, for example in rectangular rooms, there is no
net energy propagation. This has the effect of shortening the reverberation time, as the
spread of sound energy throughout the room is attenuated. In the reverberation room
this effect is negligible, so we expect Rt to be much longer. Additionally, all the surfaces
in the room are made from a highly reflective plaster material on solid hard walls, and
although the exact absorption coefficient is not known, its value can be expected to be
very low, around α = 0.01 [15, pg. 531].

Time (s)
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L
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B
)

Figure 11: Reverberation Time For Rectangular Room. Black line shows the Sabine
prediction of Rt = 3.24s.
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Figure 11 shows the SPL plots for simulation runs at various absorption coefficients.
The dependence of the absorption coefficient α on Rt is explicitly shown here; we can
see that it is one of the strongest contributing factors in finding Rt. No method appears
to match the experimental recording however. This could be due to inaccuracies in the
recording and processing of the impulse response. Experimental determinations of Rt

are generally extrapolated from smaller drops in SPL, and in this case, we can only see
a change of about 20dB before the background noise level is reached. Ambiguities over
when this ‘noise floor’ becomes noticeable can detract from the confidence in the result.
The Sabine plot for α = 0.01 is also shown for interest although it should be noted that
its effectiveness for non-rectangular room is a point of concern [22]. We can see that
the reverberation times for α = 0.006, 0.008, 0.010 are approximately Rt = 11.5, 9.5, 7.5,
although confidence in these values is again low, with a possible error margin of around
±0.2 seconds. The extrapolation from the experimental data leads very roughly to Rt ≈
16 seconds, though the confidence is even lower for this case at about ±0.5 seconds.

Although these values don’t match the experimental value for Rt exactly, they do
exhibit the unnaturally large reverberation times expected in such a room. This is an
encouraging sign for the effectiveness of Monte Carlo method, although work is clearly
still required before it can be applied to an arbitrary space.
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6 Conclusions

We have seen that the accurate simulation of reverberant sound is a complex problem.
While still no single model has been found to provide a fully accurate representation, the
techniques discussed in this report have come close.

The Image Source model has been demonstrated as a highly efficient way of producing
a realistic impulse response, particularly with the addition of ‘cosmetic’ improvements
such as low pass filtering. Although the implementation described in this report limits
its application to rectangular rooms, it is well known to have been extended to more
irregularly shaped rooms.

Although computationally much more intensive than the Image Source method, the
Monte Carlo Ray Tracing method has proved to be much more flexible. By supporting
non-omnidirectional sound sources and asymmetric rooms, it has shown itself to be much
more applicable in a real world environment. There is also much more scope for improve-
ment with the model. Kuttruff describes how diffuse reflections can also be modelled using
ray-tracing methods, albeit at a much greater computational cost [2]. Many cutting edge
reverberation simulations are based on the basic ray model, exploring everything from
pyramidal and cone based schemes to particle based simulations [6].

Numerically, both models are in good agreement for the rectangular room, predicting
Rt ≈ 3.4 and Rt ≈ 3.5 seconds for Image Source and Monte Carlo methods respec-
tively, although these values lie slightly above the theoretical value of Rt ≈ 3.24 seconds
determined by Sabine’s method. For the reverberation room, while characteristically
long reverberation times are observed, they do not numerically match the experimentally
measured value for Rt.

Qualitatively, both models also create a fairly realistic sense of space (see [1] for
samples). The Image Source method still appears to suffer from a milder version of the
flutter effect describe in Section 4.1.2, although it is much less noticeable. The Monte
Carlo method produces a much smoother sounding output, and between the two models,
it seems to give a more realistic sense of the space. It does suffer however from a slight low
frequency ‘thwump’ sound just after the early reflections. While this could be removed
post-convolution using audio editing software, this still suggests that the model is far
from perfect, particularly for early reflections.

Ultimately, neither model provides a complete description of a space in its current
state. The accuracy of the early reflections worked out by the Image Source model and
the smoothness of the later diffuse sound field generated by the Monte Carlo method
suggest that perhaps a ‘hybrid’ model would be the ideal solution to the problem.
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A Appendices

A.1 Image Source Code Listing

The following is the MATLAB implementation of the Image Source method.

clear;

% read file in, store in vector x
[x,Fs,bits] = wavread('input');

% check for stereo file
% and convert to mono if necessary
xs = size(x);
if xs(2) == 2

x = x(:, 1) + x(:, 2);

% normalise
x = x./max(abs(x));
x = x.*(1−2ˆ(1−bits));

end

% number of rooms in each direction
N = 20;

% dimensions of room
L = [45.9623 65.23354 30.65432];

% absorbtion coefficient
alpha = 0.7;

% listener position
listenerPosition = [17.645 15.123 10.198748];

% source position
sourcePosition = [30.256 40.7124 10.370239];

% find time of last reflection
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tf = norm(((N+1)*L + sourcePosition − listenerPosition))/343;
% and allocate space for IIR vector
iirImage = zeros(1,ceil(tf*Fs)+400);

% store the initial lowpass impulse
% choose
Nf = 3*N+1;
h = [0.5; 0.5; zeros(Nf−2,1)];

% create lowpass filter which increases in degree
% for each wall passed. vector doesn't wrap
% as long as Nf > numReflections
lpf = zeros(Nf, 3*N + 1);
lpf(1,1) = 1;
for numReflections = 1:3*N

% the +1 accounts for the fact that we have to
% store a vector for the case of 0 reflections:
% Matlab doesn't support zero−based indexing...
lpf(:,numReflections+1) = ifft(fft(h).ˆ(numReflections+1));

end

% look at each dimension
for d = −N:N % x indice

for e = −N:N % y indice
for f = −N:N % z indice

% store indices in vector
i = [d e f];

% find lengths using both odd and & even formulae
oddR = (i+1).*L − sourcePosition − listenerPosition;
evenR = i.*L + sourcePosition − listenerPosition;

% then use masks to chose whether to use the odd or even lengths
maskOdd = mod(i,2);
maskEven = mod(i,2) == 0;

% find response time using distance to image
R = norm(oddR.*maskOdd + evenR.*maskEven);
responseTime = R/343;

% find number of collisions to reach room (d,e,f)
numReflections = sum(abs(i));

% calculate amplitudes of response
g = (1/R).*alpha.ˆnumReflections;

% find the position within the iir vector
position = floor(responseTime*Fs) + 1;

% sum contribution onto IIR vector
iirImage(position:(position+Nf−1)) = ...
iirImage(position:(position+Nf−1)) + g.*lpf(:,numReflections+1)';

end
end
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end

% setup plotting axis vector
iirsImage = 1/Fs*(1:length(iirImage));
% and normalise iir vector
iirImage = iirImage./max(abs(iirImage));

% if source is at same point as receiver,
% this is effectively an infinitely large impulse
% at t = 0. (This case does nothing interesting,
% this is just exception handling).
if(isnan(iirImage(1)))

iirImage = 1.0;
end

% avoid clipping, should we choose to export IIR vector
iirImage = iirImage.*(1−2ˆ(1−bits));

% plot iir vector against time
figure(1)
plot(iirsImage,iirImage)
xlabel('Time (s)');
ylabel('Amplitude');
str = 'Image Source: Impulse response for room';
str = str + sprintf('%0.2f x %0.2f x %0.2f ', L(1), L(2), L(3));
title(str);

% perform the convolution
output = conv(x,iirImage);

% mix in some of the dry signal
x = [x; zeros(length(output)−length(x),1)]';
wet = 0.9;
output = x.*(1−wet) + output.*wet;

% find last zero...
lastZero = 0;
for j = 1:length(output)

if output(j) 6= 0
lastZero = j+1;

end
end
% ...and trim trailing zeros
output = output(1:lastZero);

% normalise and write to file
output = output./max(abs(output));
output = output.*(1−2ˆ(1−bits));

wavwrite(output,Fs,bits, 'outputImageTest')
% ... and we're done.
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A.2 Monte Carlo Ray Tracing Code Listing

The following is the MATLAB implementation of the Monte Carlo method.

clear;

[x,Fs,bits] = wavread('input');

L = 6.5 % length x
W = 3 % width y
H = 3 % height z

volume = W*H*L

% furthest distance "ray" can travel without intersection
maxDistance = norm([W L H]);

A = [0 0 0.1; 0 0 0; 0.1 0 0]; % left wall 570cm
A(:,:,2) = [0 0 0.1; 0 0 0; −0.146 2.80 0]; % back 280cm

A(:,:,3) = [−0.146 2.80 0.1; 5.98 1.79 0; −0.146 2.80 0]; % right 612.5cm
A(:,:,4) = [5.7 0 0; 5.7 0 0.1; 5.98 1.79 0]; % front 180cm

A(:,:,5) = [0.1 0 0; 0 0 0; 0 0.1 0]; % floor
A(:,:,6) = [5.7 0 2.4 ; 5.98 1.79 2.7; 0 0 2.4]; % roof

% preallocate array for normals for 6 surfaces
normals = zeros(6,3);
% and array of a charateristic point on each
points = zeros(6,3);

% find normals
for a = 1:6

% find the normal
normal = cross(A(1,:,a) − A(2,:,a), A(1,:,a) − A(3,:,a));
% pick point on the plane
point = A(1,:,a);

% may as well make it the unit normal while we're here
normals(a,:) = normal./norm(normal);
points(a,:) = point;

end

% non−square room
normals

% room coeffecient
alpha = 0.006;

% choose number of "rays" to simulate
numbRays = 10000

% when do we terminate the ray
terminationLength = 5000
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% position and direction vector of sound source
soundSource = [1.1 1.42 1]

% detector position and radius
detectorPos = [4.78 0.77 1.2]

drawRays = false;
% set up plot with sound source marked
if(drawRays)

% generate a colour map for each "ray"
colours = colormap(hsv);

hold on
figure(1)
plot3([soundSource(1);soundSource(1)], [soundSource(2);soundSource(2)], ...
[soundSource(3);soundSource(3)], 'ko', 'LineWidth',2,'MarkerSize',10');
plot3([detectorPos(1);detectorPos(1)], [detectorPos(2);detectorPos(2)], ...
[detectorPos(3);detectorPos(3)], 'ko', 'LineWidth',2,'MarkerSize',10');
view(38,35)
grid on
xlabel('x')
ylabel('y')
zlabel('z')

end

% find the latest concievable reflection
lastPosReflection = (terminationLength + 2*maxDistance)/343
% and size the iir vector appropriately
iirMonte = zeros(1,ceil(lastPosReflection*Fs)+1000);

sqrtTwoPi = 0.05*sqrt(2*pi/numbRays);

for r = 1:numbRays

% generate direction vector of sound source and normalise
direction = randn(1,3);
direction = direction/norm(direction);

% set the first point to trace from to be the sound source
nextPoint = soundSource;
% track number of reflections
numReflections = 0;

% reset counters
totalDistance = 0;
nearestSurface = 0;

% invalid surface
invalidSurface = 0;

% loop until the sound ray has negligible energy left
while(totalDistance < terminationLength)
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% the ray should NEVER travel more than this
% so it is a safe value to start at
shortestT = 2*maxDistance;
source = nextPoint;

rTemp = totalDistance;
if(totalDistance == 0)

rTemp = norm(source−detectorPos);
end
% dynamically find radius
radius = 0.1*rTemp*sqrtTwoPi;

% a is always 1
b = 2.*dot((source−detectorPos),direction);
c = dot((source−detectorPos),(source−detectorPos)) − radius.*radius;
discriminant = bˆ2 − 4*c;

% if there is a collision
if(discriminant ≥ 0)

% if the radius is small enough
% the intersection point can be approximated
% by the sphere centre.
% similarly if this is the ray's first iteration
% trace it directly to the source to get a clean
% impulse, for positive time solutions
if(radius < 0.01 | | (totalDistance == 0 && −1*b > sqrt(discriminant)))

intersect = detectorPos;
elseif (totalDistance 6= 0)

t = (−b + sqrt(discriminant))/2;
intersect = source + t.*direction;

else
intersect = 0;

end

if(intersect 6= 0)
distToMic = totalDistance + norm(intersect−source);
responseTime = distToMic/343;
g = (1/distToMic)*(1−alpha)ˆnumReflections;
position = floor(responseTime*Fs) + 1;
iirMonte(position) = iirMonte(position) + g;

end
end

% this is the time component of the ray
% declared here to preserve scope
t = 0;

% for each plane
for a = 1:6

t = dot(normals(a,:),(points(a,:) − source)) / dot(normals(a,:), direction);

% we are only interested the smallest solutions

25



% which propagates forward in time
if(t > 0 && t < shortestT && a 6= invalidSurface)

shortestT = t;
nearestSurface = a;

end
end

invalidSurface = nearestSurface;
p = source + shortestT.*direction;

dist = norm(p−source);

nextPoint = p;

% we can trace the ray in 3D
if(drawRays)

plot3([source(1);nextPoint(1)], [source(2);nextPoint(2)], ...
[source(3);nextPoint(3)], 'Color', colours(5*r, :));
pause(0.1)

end

% track the distance travelled so far
totalDistance = totalDistance + dist;

% mirror direction
direction = direction − 2*dot(direction, ...
normals(nearestSurface,:)).*normals(nearestSurface,:);

% increment reflection counter
numReflections = numReflections + 1;

end

% give the user a chance to cancel during long simulations
pause(0);
sprintf('Total distance (for ray %i) is %d, with %d reflections', ...
r, totalDistance,numReflections)

end

% find last zero...
lastZero = 0;
for j = 1:length(iirMonte)

if iirMonte(j) 6= 0
lastZero = j+1;

end
end
% ...and trim trailing zeros
iirMonte = iirMonte(1:lastZero);
% normalize
iirMonte = iirMonte./max(iirMonte);
% set up plotting vector
iirsMonte = 1/Fs*(1:length(iirMonte));

% uncomment below to output file
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% output = conv(x, iirMonte);
% output = (output.*(1−2ˆ(1−bits)))./max(abs(output));
% wavwrite(output,Fs,bits, 'outputMonte')

% plot results
figure(1)
plot(iirsMonte, iirMonte);
str = sprintf('Monte Carlo: Impulse response for room %0.2f x %0.2f x %0.2f ', W, L, H);
title(str);
str = 'done'

A.3 Testing Random Number Generator Efficiency

The following code was used to test the efficiency of the various random number genera-
tion techniques. The results were:

� 100, 000 direction vectors from uniform distribution took 0.34 seconds.

� 100, 000 direction vectors from Gaussian distribution took 0.32 seconds.

� 100, 000 direction vectors using the Weisstein correction [16] distribution took 1.15
seconds.

clear;

numbAngles = 100000;
angles1 = zeros(1,numbAngles);
angles2 = zeros(1,numbAngles);
angles3 = zeros(1,numbAngles);

tic
for i = 1:numbAngles

% generate 3 uniform random numbers on (−1,1)
direction = rand(1,3)*2 −1;
direction = direction/norm(direction);
angles1(i) = atan2(direction(2), direction(3));

end
toc

tic
for i = 1:numbAngles

% generate 3 Gaussian random numbers on (−1,1)
direction = randn(1,3);
direction = direction/norm(direction);
angles2(i) = atan2(direction(2), direction(3));

end
toc

tic
for i = 1:numbAngles

% pick 0 < phi < 2*pi
phi = rand(1,1)*2*pi;
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theta = acos(2*rand(1,1)−1);
direction2 = [sin(theta)*cos(phi) sin(theta)*sin(phi) cos(theta)];
angles3(i) = atan2(direction2(2), direction2(3));

end
toc

figure(1)
subplot(1, 2, 1), hist(angles1,100);
title('Angular Distribution: Naive Direction Vector Method');
subplot(1, 2, 2), hist(angles2,100);
title('Angular Distribution: Gaussian Method');
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